
****************************************

BANACH CENTER PUBLICATIONS, VOLUME **

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 201*

WIDOM FACTORS FOR THE HILBERT NORM
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Abstract. Given a probability measure µ with non-polar compact support K, we define the n-th

Widom factor W 2
n(µ) as the ratio of the Hilbert norm of the monic n-th orthogonal polynomial

and the n-th power of the logarithmic capacity of K. If µ is regular in the Stahl-Totik sense

then the sequence (W 2
n(µ))∞n=0 has subexponential growth. For measures from the Szegő class on

[−1, 1] this sequence converges to some proper value. We calculate the corresponding limit for

the measure that generates the Jacobi polynomials, analyze the behavior of the corresponding

limit as a function of the parameters and review some other examples of measures when Widom

factors can be evaluated.

1. Introduction. Let µ be a positive Borel measure on C with compact support K

containing infinitely many points. The Gram-Schmidt process in the space L2(µ) defines

the unique sequence of orthonormal polynomials pn(z) = κnz
n + · · · provided κn > 0.

By qn with n ∈ Z+ we denote the monic orthogonal polynomials, that is qn = κ−1
n pn. It

is known (see e.g. [15], p.78) that ||qn||2 = κ−1
n realizes infQ∈Mn

||Q||2 whereMn stands

for the class of all monic polynomials of degree at most n. If K ⊂ R then (see e.g. [15],

p.79) a three-term recurrence relation

x qn(x) = qn+1(x) + bn qn(x) + a2
n−1 qn−1(x)
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is valid with the Jacobi parameters an = κn/κn+1 and bn =
∫
x p2

n(x) dµ(x). If, in

addition, µ(R) = 1 then p0 = q0 ≡ 1, so κ0 = 1 and a0a1 · · · an−1 = κ−1
n .

Suppose µ is a probability Borel measure on C and the logarithmic capacity Cap(K)

is positive. Let us define n-th Widom-Hilbert factor as

W 2
n(µ) :=

||qn||2
Capn(K)

.

Thus, for K ⊂ R we have W 2
n(µ) = (κn ·Capn(K))−1 and, in particular, for K = [−1, 1],

W 2
n(µ) = κ−1

n · 2n. (1)

Example 1.1. The equilibrium measure dµe = dx
π
√

1−x2
generates the Chebyshev poly-

nomials of the first kind p0 ≡ 1, pn =
√

2Tn for n ∈ N, where Tn(x) = cos(n arccosx) =

2n−1xn + · · · for |x| ≤ 1. Here, κn = 2n−1/2 and W 2
0 (µe) = 1, W 2

n(µe) =
√

2 for n ∈ N.

For the Chebyshev polynomials of the second kind (see e.g. [14], p.3) we have to take

dν = 2
π

√
1− x2 dx. Then pn(x) = Un(x) = 2nxn + · · · , so κn = 2n and W 2

n(ν) = 1 for

n ∈ Z+.

In general, for 1 ≤ p ≤ ∞, we can define W p
n(µ) as

infMn ||Q||p
Capn(K) where || · ||p is the norm

in the space Lp(µ). In the case p = ∞ we get the Widom-Chebyshev factors considered

in [7]. Since µ(C) = 1, by Hölder’s inequality, W p
n(µ) ≤W r

n(µ) for 1 ≤ p ≤ r ≤ ∞.
As in the case p =∞, the value W p

n is invariant under dilation and translation. Indeed,

the map ϕ(z) = w = az + b with a 6= 0 transforms µ0 into µ with dµ(w) = dµ0(w−ba ). If

qn(µ0, z) = zn+· · · realizes the infimum of norm in Lp(µ0) then qn(µ,w) = anqn(µ0,
w−b
a )

does so in the space Lp(µ). Therefore, ||qn(µ, ·)||p = |a|n · ||qn(µ0, ·)||p. On the other hand,

Cap(aK + b) = |a|Cap(K). From here, W p
n(µ) = W p

n(µ0).

Example 1.2. The monic Chebyshev polynomials (21−nTn)∞n=1 have a remarkable prop-

erty: they realize infMn
|| · ||p in the space Lp(µe) for each 1 ≤ p ≤ ∞ (see e.g. [11], p.96).

For proper p, it is easy to check that
∫ π

0
| cos nt|p dt =

∫ π
0

sinp t dt which does not depend

on n ∈ N. Hence, for all n ∈ N we have

W p
n(µe) = 2 ·

(
1

π

∫ π

0

sinp t dt

)1/p

,

which increases to W∞n (µe) = 2 as p→∞.

The Hilbert case p = 2 is of interest since some important classes of measures in

the theory of general orthogonal polynomials can be described in terms of behaviour of

Widom factors. For example, a measure µ is regular in the Stahl-Totik sense (µ ∈ Reg)

if and only if the sequence of Widom factors has subexponential growth.

Recall that µ ∈ Reg ([12], Def.3.1.2) if κ
− 1
n

n → Cap(K) as n → ∞ and a sequence

(an)∞n=1 with an > 0 has subexponential growth if an = exp(n · εn) with εn → 0 as

n → ∞. In the case of Chebyshev norm (p = ∞), by G. Szegő, the sequence of Widom

factors has subexponential growth for each non-polar compact set K.

By the celebrated Szegő’s result ([14], p.297), for a wide class of measures on [−1, 1]

the sequence (W 2
n(µ))∞n=0 converges. In Section 2 we calculate the corresponding limit for

the measure that generates the Jacobi polynomials. In Section 3 we discuss the Widom
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characterization of Szegő’s class. In Section 4 we consider the behaviour of the Widom

factors for the Pollaczek polynomials - a typical example of polynomials that are generated

by a regular measure beyond the Szegő class. Also, following methods from [12], we

consider Widom factors for some irregular measures. Section 5 is devoted to the review

of related results for orthogonal polynomials on Julia sets.

The motivation of our research is the problem to define the Szegő class for the general

case, particularly for strictly singular measures. The Szegő type condition for the finite

gap case is given in terms of the Radon-Nikodym derivative of the spectral measure with

respect to the Lebesgue measure. Therefore it cannot be directly applied for the strictly

singular case. But the Widom condition (Section 3), which characterizes the Szegő class

in known cases, is given only in terms of properties of (W 2
n(µ))∞n=0.

We suggest the name Widom factor for W 2
n(µ) because of the fundamental paper [17],

where H. Widom considered the corresponding values for K ⊂ C which is a finite union

of smooth Jordan curves.

For basic notions of logarithmic potential theory we refer the reader to [10], log denotes

natural logarithm. The symbol ∼ denotes the strong equivalence: an ∼ bn means that

an = bn(1 + o(1)) for n→∞.

2. Jacobi weight. Let us find the limit of the sequence (W 2
n(µ))∞n=0 when dµ/dx is

the density of a beta-distribution on [−1, 1]. Here, µ generates the classical (Jacobi)

orthogonal polynomials on [−1, 1]. The Jacobi polynomials are orthogonal with respect

to the weight hα,β(x) = (1−x)α(1+x)β with −1 < α, β <∞. Let Cα,β =
∫ 1

−1
hα,β(x) dx.

Then the measure dµα,β = C−1
α,βhα,β(x) dx has unit mass and we will consider Wn,α,β :=

W 2
n(µα,β).

Lemma 2.1. We have
∫ π/2

0
(2 sin t)α(2 cos t)βdt ≥ π/2 for each −1 < α, β < ∞. If

α2 + β2 > 0 then the inequality is strict.

Proof. For each x ∈ R we have the inequality ex ≥ 1 + x+ x2/2 · χ(0,∞), which is strict

if x 6= 0. Let us take x = log[(2 sin t)α(2 cos t)β ]. Then

(2 sin t)α(2 cos t)β ≥ 1 + α log(2 sin t) + β log(2 sin t) + x2/2 · χ(0,∞).

Since ∫ π/2

0

log(2 sin t) dt =

∫ π/2

0

log(2 cos t) dt = 0,

(see e.g. [18], p.402, form.688), we get the desired inequality. Let us check its strictness if at

least one of the parameters is not zero. It is enough to find t ∈ (0, π/2) such that x(t) > 0.

Then, by continuity, x is positive in some neighborhood of t and
∫ π/2

0
x2(t) · χE dt > 0.

Here, E = {t ∈ (0, π/2) : x(t) > 0}.
Suppose α+ β > 0. Then x(π/4) = (α+ β)/2 · log 2 > 0.

If α+ β < 0 and β < 0 with α ≥ β, then for t = π/2− ε with small enough ε we get

x(t) = log[(2 sin 2ε)β(2 cos ε)α−β ] > (α− β) log(2 cos ε) ≥ 0.

Similarly, if α+ β < 0 and α < 0 with α < β, then one can take t = ε.

Finally, let α+β = 0 and, without loss of generality, α > 0. Then x(t) = log(tan t)α >

0 for t > π/4.
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Lemma 2.2. For −1 < α, β < ∞, let Cα,β be defined as above. Then 2α+β Cα,β ≥ π/2.

The inequality is strict if (α, β) 6= (−1/2,−1/2). If (α, β) approaches the boundary of the

domain (−1,∞)2 then 2α+β Cα,β →∞.

Proof. By substitution x = cos 2t, we have

Cα,β =

∫ 1

−1

(1− x)α+1/2(1 + x)β+1/2 dx√
1− x2

=

∫ π/2

0

(2 sin2 t)α+1/2(2 cos2 t)β+1/2 2 dt.

From here, 2α+β Cα,β =
∫ π/2

0
(2 sin t)A(2 cos t)Bdt with A = 2α + 1, B = 2β + 1. Since

−1 < A,B < ∞, Lemma 2.1 can be applied. The equality 2α+β Cα,β = π/2 occurs only

if A = B = 0, that is α = β = −1/2.

Let us analyze the boundary behavior of the function f(α, β) := 2α+β Cα,β . First we

consider the symmetric case. For large m ∈ N we have

f(m,m) = 4m
∫ 1

−1

(1− x2)m dx = 4m
∫ π

0

sin2m+1 t dt = 4m
2m

2m+ 1
· 2m− 2

2m− 1
· · · 2

3
· 2

and f(m,m) ∼ 4m
√
π/m.

For the opposite case, let ε be small and positive. Then

f(−1 + ε,−1 + ε) = 4−1+ε · 2
∫ 1

0

(1− x2)−1+ε dx >
1

4

∫ 1

0

(1− x)−1+ε dx =
1

4 ε
.

In general, let us estimate from below f(α,m) = 2α+m
∫ 1

−1
(1 − x)α(1 + x)m dx for

large m. If α < 0 then f(α,m) > 2m−1
∫ 1

0
(1 + x)m dx ∼ 4m/m.

If α ≥ 0 then f(α,m) > 2m+α
∫ 1/2

0
(1−x)α(1+x)m dx > 2m

∫ 1/2

0
(1+x)m dx ∼ 3m/m.

Similarly, f(−1 + ε, β) > 2−1+β
∫ 1

0
(1+x)β

(1−x)1−ε dx. If β < 0 then (1 + x)β > 2−β and

f(−1 + ε, β) > 1
2 ε . If β ≥ 0 then 2β(1 + x)β ≥ 1, which gives the same lower bound

f(−1 + ε, β) as above. Clearly, f(α,−1 + ε) and f(m,β) can be estimated in the same

way.

The leading coefficient for Jacobi polynomials is given in terms of the gamma function

Γ(p) =
∫∞

0
xp−1e−x dx with p > 0. It is known (see e.g. [13], L.4.3) that

Γ(n+ 1) = n · Γ(n) = n!, Γ(n+ p) ∼ np Γ(n) for n ∈ N, p > 0. (2)

From here and by Stirling’s formula,

Γ(2n)

Γ2(n)
∼ 1

2

√
n

π
4n. (3)

Let

Wα,β :=

√
π

2α+β Cα,β
.

Theorem 2.3. We have

(i) for each −1 < α, β <∞, Wn,α,β →Wα,β as n→∞
(ii) sup−1<α,β<∞Wα,β = W−1/2,−1/2 =

√
2, which is the only maximum

(iii) Wα,β → 0 as (α, β) approaches the boundary of the domain (−1,∞)2.
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Proof. The leading coefficient of the Jacobi polynomial P (α,β) for the measure dµ =

hα,β(x) dx is given by the formula (25) in [13], 7.1. Therefore, for the normalized case,

we have

κn(α, β) =

√
Cα,β

2n

√
α+ β + 2n+ 1

n! 2α+β+1

Γ(α+ β + 2n+ 1)√
Γ(α+ n+ 1)Γ(β + n+ 1)Γ(α+ β + n+ 1)

.

By (2), the last fraction is equivalent to Γ(2n)
Γ3/2(n)

2α+β+1
√
n

. Therefore,

κn(α, β) · 2n ∼
√

2α+β+1 Cα,β

√
α+ β + 2n+ 1

n

Γ(2n)√
n! Γ3/2(n)

.

By (2) and (3), the last fraction here is equivalent to 1
2

1√
π

4n. Thus, κn(α, β) · 2−n ∼√
2α+β Cα,β / π, which is, by (1), the desired result.

The statements (ii) and (iii) follow from Lemma 2.2.

For example, for the Legendre polynomials we have C0,0 = 2 and W0,0 =
√
π/2.

3. The Szegő class. The measures µα,β from the previous section satisfy the Szegő con-

dition. Recall that a probability measure dµ(x) = ω(x) dx with support [−1, 1] belongs

to the Szegő class (µ ∈ (S)) if I(ω) :=
∫ 1

−1
logω(x)

π
√

1−x2
dx > −∞, which means that this inte-

gral converges for it cannot be +∞. Orthogonal polynomials generated by µ ∈ (S) enjoy

several nice asymptotics. The basic of them is the asymptotics of pn(z)(z +
√
z2 − 1)−n

outside [−1, 1] as n → ∞ (see [14], p.297, or e.g. T.1.7 in [16], (10.3) in [15]). Here, we

take the branch of
√
z2 − 1 that behaves like z near infinity, so the modulus of the second

term above is exp(−n · g(z)), where g is the Green function of C \ [−1, 1] with pole at

infinity. By setting z =∞, we get (see, e.g. [16], p.26, (10.4) in [15])

lim
n
W 2
n(µ) =

√
π exp(I(ω)/2), (4)

which gives another way to calculate Wα,β .

Thus, for any measure from the Szegő class, the sequence of Widom factors converges

to some positive value. The inverse implication is also valid: if limn W
2
n(µ) exists in (0,∞)

then µ ∈ (S) (see e.g. T.2.4 in [6]).

Remark 3.1. In (4) we have the coefficient
√
π, not

√
2π, as in (10.4) in [15], since

different indexation of the Jacobi parameters was used there.

We see that I(ω) =
∫

logω dµe. Let us calculate this value for the equilibrium density

ωe = dµe/dx = 1
π
√

1−x2
. Here, I(ωe) = − log π −

∫ π
0

log sin t dt/π = log(2/π). As a

generalization of Theorem 2.3, let us show that I(ωe) realizes maximum of I(ω) among

all densities from the Szegő class (compare with (4.7) in [6]).

Proposition 3.2. Suppose ω
a.e.
> 0 with

∫ 1

−1
ω(x) dx = 1 and I(ω) > −∞. Then I(ω) ≤

log(2/π) with equality if and only if ω
a.e.
= ωe.

Proof. We have I(ω) =
∫

logωe dµe +
∫

log(ω/ωe) dµe. The first term here is log(2/π),

for the latter we use Jensen’s inequality (see e.g. [5], p.141.):∫
log(ω/ωe) dµe ≤ log

∫
ω/ωe dµe = log

∫ 1

−1

ω(x) dx = 0.
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Since log(·) is strictly concave, the equality above is possible if and only if ω/ωe
µ−a.e.

= 1,

that is ω
a.e.
= ωe.

Corollary 3.3. Let µ ∈ (S) and W (µ) := limn W
2
n(µ). Then W (µ) ≤ W (µe) with

equality if and only if µ = µe.

During the last two decades significant progress was achieved in the generalization of

Szegő’s theory to the case of finite gap Jacobi matrices J (see e.g. the review [6]). For

such matrices, the essential spectrum K = σess(J) is a finite union of closed intervals. If

the spectral measure µ is absolutely continuous, that is dµ(x) = ω(x) dx, then the Szegő

class can be defined as (4.6) in [6]: µ ∈ (S) if∫
K

logω(x)√
dist(x,R \K)

dx > −∞.

Here, we have the Widom characterization ((4.11) in [6])

µ ∈ (S) ⇐⇒ lim sup
n→∞

W 2
n(µ) > 0. (5)

As in the case W∞n (see [1], [2] or e.g. [7]), the behavior of (W 2
n(µ)) for such measures

is rather irregular. This sequence may have a finite number of accumulation points or

the set of its accumulation points may fill a whole interval. For asymptotics of W 2
n(µ) we

refer the reader to [15], p.101.

As an example, let us consider the Jacobi matrix with periodic coefficients (an) and

zero (or slowly oscillating) main diagonal. Recall that periodic coefficients gives a Jacobi

matrix in the Szegő class. We follow [8] here.

Example 3.4. Let a2n−1 = a, a2n = b for n ∈ N with b > 0 and a = b+ 2. These values

with bn = 0 define a Jacobi matrix B0 with spectrum σ(B0) = [−b−a, b−a]∪ [a−b, a+b]

([8], L.2.1). The same values (an)∞n=1 with bn = sin nγ for 0 < γ < 1 give a matrix B with

σ(B) = [−b− a− 1, b− a+ 1]∪ [a− b− 1, a+ b+ 1] ([8], T.2.6). Let µ0 and µ be spectral

measures for B0 and B correspondingly. We know (see e.g. [10], Cor.5.2.6) that the

capacity of [−B,−A] ∪ [A,B] for 0 < A < B is 1
2

√
B2 −A2. Therefore, Cap(σ(B0)) =√

ab, Cap(σ(B)) =
√
a(b+ 1). From here, W 2

2n(µ0) = 1 and W 2
2n−1(µ0) =

√
a/b for

n ∈ N. The measure µ0 is absolutely continuous with respect to the Lebesgue measure

(see e.g. [16], L.2.15). Here, µ0 ∈ (S), as we expected.

On the other hand, W 2
2n(µ) = ( b

b+1 )n and W 2
2n+1(µ) = ( b

b+1 )n
√

a
b+1 . Thus, W 2

n(µ)→
0 as n→∞, µ /∈ (S) and µ /∈ Reg.

4. Outside the Szegő class. The measure µ that generates the Pollaczek polynomials

(see [14], Appendix, [9], p.80, [16], p.6) presents a typical example of a regular absolutely

continuous measure beyond the Szegő class.

Example 4.1. For real parameters a and b with a ≥ |b|, in the simplest case (λ = 1/2),

the weight function for the Pollaczek polynomials is ( [14], p.394, [16], p.6)

ω(x) =
1 + a

2π
exp(−2 t · arcsinx) · |Γ(1/2 + i t) |2

with t = ax+b
2
√

1−x2
for |x| ≤ 1.
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By the Erdős-Turán criterion (see e.g [12], p.101), the measure dµ(x) = ω(x) dx is

regular. On the other hand, ω goes to zero exponentially fast near the endpoints of the

interval [−1, 1], thus the integral I(ω) diverges and µ /∈ (S). Substituting x = ∞ in [16]

(1.3.19), we get

lim
n
W 2
n(µ) · na/2 = Γ(

a+ 1

2
).

Here, the sequence (W 2
n(µ))∞n=0 converges to zero, but slowly, which corresponds with the

regularity of µ.

In Example 4.1 the sequence (W 2
n(µ))∞n=0 converges to zero with an exponential rate.

Using techniques from [12], let us show that any rate of decrease, which is faster than

exponential, can be achieved.

Example 4.2. Let Zn be the set of zeros of the Chebyshev polynomial T3n for n ∈ Z+.

Since T3n+1(x) = T3(T3n(x)), we have Zn ⊂ Zn+1. Let µn = 3−n
∑
x∈Zn δx for n ∈ N,

where δx is the Dirac measure at x. Given a sequence (an)∞n=1 with an > 0,
∑∞
n=1 an = 1,

we consider the measures µ =
∑∞
n=1 an µn and νn =

∑∞
j=n aj µj , n ∈ N. Clearly, µ is a

probability measure with support [−1, 1]. Let us take εn ↘ 0 with εn+1 ≤ εn/2 for all n.

Set A := (
∑∞
n=1 εn)−1 and an = A ·εn for n ∈ N. Then an < ||νn|| =

∑∞
j=n aj ≤ 2 an. Let

tm for m ∈ N be the monic Chebyshev polynomial, so ||tm||∞ = 21−m for m ∈ N. As in

Example 3.5.2 in [12], for 3n−1 ≤ m < 3n, let us take the polynomialQm = tm−3n−1 ·t3n−1 .

We see that
∫
|Qm|2 dµk = 0 for 1 ≤ k ≤ n− 1 and ||Qm||∞ ≤ 22−m. By the minimality

property of the monic orthogonal polynomials qn, we get

κ−2
m (µ) = ||qm||22 ≤ ||Qm||22 =

∫
|Qm|2 dµ =

∫
|Qm|2 dνn ≤ 24−2m · 2 an.

Therefore, by (1), W 2
m(µ) ≤ 4

√
2A · √εn for 3n−1 ≤ m < 3n. Here, W 2

m(µ) ↘ 0 as fast

as we wish for a suitable choice of (εn)∞n=1.

5. Julia sets. Let us analyze the behavior of Widom factors for the equilibrium measure

on Julia sets. Suppose a monic polynomial T of degree k ≥ 2 is given. Let T0(z) = z

and Tn(z) = Tn−1(T (z)) be the n−th iteration of T for n ∈ N. The Julia set BT for

the polynomial T can be defined as the boundary of the domain of attraction of infinity

A(∞) = {z ∈ C : Tn(z) → ∞ as n → ∞}. Due to H. Brolin [4], Cap(BT ) = 1 and

supp(µe) = BT for the equilibrium measure µe on BT .

Following [3], we consider the Julia set corresponding to the polynomial T (z) = z3−λz
with λ > 3. Here, deg Tn = 3n. Remark that, in the case λ = 3, we get the Chebyshev

polynomials of degrees 3n for [−2, 2] and BT coincides with this interval. For λ > 3, by

[4], BT is a Cantor type set on the real line. By [3], the Jacobi parameters satisfy the

following conditions: a1 = 1, bn = 0 for all n and

a2
3n+1 = 2λ/3− a2

3n, a2
3n+2 = λ/3, (6)

a3na3n−1a3n−2 = an (7)

In addition, by Lemma 3 and Theorem 2 in [3], we have lim
n→∞

a3n = 0 and a3n < 1.
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Therefore, by (6),

a3n+1, a3n+2 > 1 (8)

for n ∈ N.
To shorten notation, we write Wk instead of W 2

k (µe). Since Cap(BT ) = 1, we have

Wk = κ−1
n = a1 a2 · · · ak. Hence, by (7),

W3n = W3n−1 = · · · = a1 a2 a3 = 1 and W3n−1 = W3n/a3n →∞ as n→∞.
Thus, lim supk→∞Wk =∞.

Let us show that Wk ≥ 1 for all k, so lim infk→∞Wk = 1. Clearly we have the desired

inequality for k = 2 and k = 3. Suppose 3n < k < 3n+1 for some n ∈ N. Then k =

kn ·3n+· · ·+k1 ·3+k0 with kn ∈ {0, 1} and kj ∈ {0, 1, 2} for 0 ≤ j ≤ n−1, that is k has the

representation (kn kn−1 · · · k1 k0) in base 3. By (8), Wk ≥Wk′ for k′ = (kn kn−1 · · · k1 0).

By (7), Wk′ = Wm, where m = k′/3 has the representation (mn−1 · · ·m1m0) with

mj = kj+1. Using (8) again, we get Wm ≥ Wm′ with m′ = (mn−1 · · ·m1 0). Proceeding

this way, we deduce that Wk > 1 for such k.

The asymptotic self-reproducing property of the coefficients allow to calculate accu-

mulation points of the sequence (Wk)∞k=1. For example, if n→∞ then W3n+1 = a3n+1 =√
2λ/3− a2

3n →
√

2λ/3, W3n+2 = a3n+1a3n+2 →
√

2λ/3
√
λ/3 =

√
2λ/3, etc.
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